基于文本的人检索旨在根据文本描述找到查询人员。关键是学习视觉文本模式之间的常见潜在空间映射。为了实现这一目标,现有的作品采用细分来获得明确的跨模式对齐方式或利用注意力来探索显着对准。这些方法有两个缺点:1)标记交叉模式比对很耗时。 2)注意方法可以探索显着的跨模式对齐,但可能会忽略一些微妙而有价值的对。为了缓解这些问题,我们为基于文本的人检索引入了一个隐式视觉文本(IVT)框架。与以前的模型不同,IVT利用单个网络来学习两种模式的表示形式,这有助于视觉文本相互作用。为了探索细粒的对准,我们进一步提出了两个隐式语义比对范式:多级比对(MLA)和双向掩码建模(BMM)。 MLA模块在句子,短语和单词级别上探索了更精细的匹配,而BMM模块旨在挖掘视觉和文本模态之间的\ textbf {更多}语义对齐。进行了广泛的实验,以评估公共数据集中提出的IVT,即Cuhk-Pedes,RSTPREID和ICFG-PEDES。即使没有明确的身体部位对准,我们的方法仍然可以达到最先进的表现。代码可在以下网址获得:https://github.com/tencentyouturesearch/personretrieval-ivt。
translated by 谷歌翻译
对看不见的环境变化的深入强化学习的概括通常需要对大量各种培训变化进行政策学习。我们从经验上观察到,接受过许多变化的代理商(通才)倾向于在一开始就更快地学习,但是长期以来其最佳水平的性能高原。相比之下,只接受一些变体培训的代理商(专家)通常可以在有限的计算预算下获得高回报。为了两全其美,我们提出了一个新颖的通才特权训练框架。具体来说,我们首先培训一名通才的所有环境变化。当它无法改善时,我们会推出大量的专家,并从通才克隆过重量,每个人都接受了训练,以掌握选定的一小部分变化子集。我们终于通过所有专家的示范引起的辅助奖励恢复了通才的培训。特别是,我们调查了开始专业培训的时机,并在专家的帮助下比较策略以学习通才。我们表明,该框架将政策学习的信封推向了包括Procgen,Meta-World和Maniskill在内的几个具有挑战性和流行的基准。
translated by 谷歌翻译
我们介绍了MTG,这是一套新的基准套件,用于培训和评估多语言文本生成。它是具有最大人类通知数据(400K)的第一次传播的多语言多路文本生成数据集。它包括五种语言(英语,德语,法语,西班牙语和中文)的四代任务(故事产生,问题生成,标题生成和文本摘要)。Multiway设置可以启用跨语言和任务的模型测试知识传输功能。使用MTG,我们从不同方面训练和分析了几种流行的多语言生成模型。我们的基准套件通过更多的人为宣传的并行数据促进了模型性能增强。它提供了各种一代方案的全面评估。代码和数据可在\ url {https://github.com/zide05/mtg}上获得。
translated by 谷歌翻译
High network communication cost for synchronizing gradients and parameters is the well-known bottleneck of distributed training. In this work, we propose TernGrad that uses ternary gradients to accelerate distributed deep learning in data parallelism. Our approach requires only three numerical levels {−1, 0, 1}, which can aggressively reduce the communication time. We mathematically prove the convergence of TernGrad under the assumption of a bound on gradients. Guided by the bound, we propose layer-wise ternarizing and gradient clipping to improve its convergence. Our experiments show that applying TernGrad on AlexNet doesn't incur any accuracy loss and can even improve accuracy. The accuracy loss of GoogLeNet induced by TernGrad is less than 2% on average. Finally, a performance model is proposed to study the scalability of TernGrad. Experiments show significant speed gains for various deep neural networks. Our source code is available 1 .
translated by 谷歌翻译
High demand for computation resources severely hinders deployment of large-scale Deep Neural Networks (DNN) in resource constrained devices. In this work, we propose a Structured Sparsity Learning (SSL) method to regularize the structures (i.e., filters, channels, filter shapes, and layer depth) of DNNs. SSL can: (1) learn a compact structure from a bigger DNN to reduce computation cost; (2) obtain a hardware-friendly structured sparsity of DNN to efficiently accelerate the DNN's evaluation. Experimental results show that SSL achieves on average 5.1× and 3.1× speedups of convolutional layer computation of AlexNet against CPU and GPU, respectively, with off-the-shelf libraries. These speedups are about twice speedups of non-structured sparsity; (3) regularize the DNN structure to improve classification accuracy. The results show that for CIFAR-10, regularization on layer depth can reduce 20 layers of a Deep Residual Network (ResNet) to 18 layers while improve the accuracy from 91.25% to 92.60%, which is still slightly higher than that of original ResNet with 32 layers. For AlexNet, structure regularization by SSL also reduces the error by ∼ 1%. Our source code can be found at https://github.com/wenwei202/caffe/tree/scnn
translated by 谷歌翻译
With an ever-growing number of parameters defining increasingly complex networks, Deep Learning has led to several breakthroughs surpassing human performance. As a result, data movement for these millions of model parameters causes a growing imbalance known as the memory wall. Neuromorphic computing is an emerging paradigm that confronts this imbalance by performing computations directly in analog memories. On the software side, the sequential Backpropagation algorithm prevents efficient parallelization and thus fast convergence. A novel method, Direct Feedback Alignment, resolves inherent layer dependencies by directly passing the error from the output to each layer. At the intersection of hardware/software co-design, there is a demand for developing algorithms that are tolerable to hardware nonidealities. Therefore, this work explores the interrelationship of implementing bio-plausible learning in-situ on neuromorphic hardware, emphasizing energy, area, and latency constraints. Using the benchmarking framework DNN+NeuroSim, we investigate the impact of hardware nonidealities and quantization on algorithm performance, as well as how network topologies and algorithm-level design choices can scale latency, energy and area consumption of a chip. To the best of our knowledge, this work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa. The best results achieved for accuracy remain Backpropagation-based, notably when facing hardware imperfections. Direct Feedback Alignment, on the other hand, allows for significant speedup due to parallelization, reducing training time by a factor approaching N for N-layered networks.
translated by 谷歌翻译
The input and output of most text generation tasks can be transformed to two sequences of tokens and they can be modeled using sequence-to-sequence learning modeling tools such as Transformers. These models are usually trained by maximizing the likelihood the output text sequence and assumes the input sequence and all gold preceding tokens are given during training, while during inference the model suffers from the exposure bias problem (i.e., it only has access to its previously predicted tokens rather gold tokens during beam search). In this paper, we propose MoCa ({\bf Mo}mentum {\bf Ca}libration) for text generation. MoCa is an online method that dynamically generates slowly evolving (but consistent) samples using a momentum moving average generator with beam search and MoCa learns to align its model scores of these samples with their actual qualities. Experiments on four text generation datasets (i.e., CNN/DailyMail, XSum, SAMSum and Gigaword) show MoCa consistently improves strong pre-trained transformers using vanilla fine-tuning and we achieve the state-of-the-art results on CNN/DailyMail and SAMSum datasets.
translated by 谷歌翻译
The interaction and dimension of points are two important axes in designing point operators to serve hierarchical 3D models. Yet, these two axes are heterogeneous and challenging to fully explore. Existing works craft point operator under a single axis and reuse the crafted operator in all parts of 3D models. This overlooks the opportunity to better combine point interactions and dimensions by exploiting varying geometry/density of 3D point clouds. In this work, we establish PIDS, a novel paradigm to jointly explore point interactions and point dimensions to serve semantic segmentation on point cloud data. We establish a large search space to jointly consider versatile point interactions and point dimensions. This supports point operators with various geometry/density considerations. The enlarged search space with heterogeneous search components calls for a better ranking of candidate models. To achieve this, we improve the search space exploration by leveraging predictor-based Neural Architecture Search (NAS), and enhance the quality of prediction by assigning unique encoding to heterogeneous search components based on their priors. We thoroughly evaluate the networks crafted by PIDS on two semantic segmentation benchmarks, showing ~1% mIOU improvement on SemanticKITTI and S3DIS over state-of-the-art 3D models.
translated by 谷歌翻译
Multi-agent artificial intelligence research promises a path to develop intelligent technologies that are more human-like and more human-compatible than those produced by "solipsistic" approaches, which do not consider interactions between agents. Melting Pot is a research tool developed to facilitate work on multi-agent artificial intelligence, and provides an evaluation protocol that measures generalization to novel social partners in a set of canonical test scenarios. Each scenario pairs a physical environment (a "substrate") with a reference set of co-players (a "background population"), to create a social situation with substantial interdependence between the individuals involved. For instance, some scenarios were inspired by institutional-economics-based accounts of natural resource management and public-good-provision dilemmas. Others were inspired by considerations from evolutionary biology, game theory, and artificial life. Melting Pot aims to cover a maximally diverse set of interdependencies and incentives. It includes the commonly-studied extreme cases of perfectly-competitive (zero-sum) motivations and perfectly-cooperative (shared-reward) motivations, but does not stop with them. As in real-life, a clear majority of scenarios in Melting Pot have mixed incentives. They are neither purely competitive nor purely cooperative and thus demand successful agents be able to navigate the resulting ambiguity. Here we describe Melting Pot 2.0, which revises and expands on Melting Pot. We also introduce support for scenarios with asymmetric roles, and explain how to integrate them into the evaluation protocol. This report also contains: (1) details of all substrates and scenarios; (2) a complete description of all baseline algorithms and results. Our intention is for it to serve as a reference for researchers using Melting Pot 2.0.
translated by 谷歌翻译
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.
translated by 谷歌翻译